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Dynamic Analysis of a Geometrical Non-Linear Plate
Using the Continuous-Time System Identification
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The dynamic analysis of a plate with non-linearity due to large deformation was investigated

in this study. There have been many theoretical and numerical analyses of the non-linear dy-

namic behavior of plates examining theoretically or numerically. The problem is how correctly

an analytical model can represent the dynamic characteristics of the actual system. To address

the issue, the continuous-time system identification technique was used to generate non-linear

models, for stiffness and damping terms, and to explain the observed behaviors with single mode

assumption after comparing experimental results with the numerical results of a linear plate

model.
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1. Introduction

The dynamic analysis of plates gained impor-
tance with the development of mechanics theory.
There are several linear theories of plates such
as the two dimensional approximation of Euler-
Bernoulli beam and the Mindlin plate theory of
Timoshenko beam model. Plates, however, are
generally subject to an out-of-plane or in-plane
excitation, which causes a nonlinear behavior of
the system. That is, there are the bending stress
and the stress according to a tensile strain in the
membrane due to a large deformation (Timoshenko
and Woinowsky-Kreiger, 1959). These stresses
lead to a geometrical non-linearity of the plate.
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Many of the most compelling studies were on the
geometrical non-linear vibration of plates. Some
of the studies were based on non-linearity such
as shear strain or curvature with large deforma-
tion. Gorman (1995) derived analytically homo-
geneous solutions of the cantilevered rectangu-
lar plate by means of the building block super-
position method. Also, he examined the eigen-
values of the plate along the variance of the or-
thotropic parameters and the length ratio between
horizontal and vertical line. Kadiri (Kadiri et al.,
1999) calculated the non-linear mode of the fixed
rectangular plate due to large deformation using
Hamilton’s principle and the spectral analysis.
Haterbouch (Haterbouch and Benamar, 2003)
examined the effect of the large deformation of
a fixed circular plate on the first two line sym-
metry mode shapes, natural frequencies and dis-
tributed bending stress. He derived a nonlinear
equation of motion of circular plate using Ham-
ilton’s principle and Bessel function. Then he in-
duced nonlinear mode shapes and non-linear nat-
ural frequencies. The researches on such a non-
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linear plate have mainly dealt with proposing an
analytical model or a procedure for obtaining a
numerical solution. In the non-linear system, how-
ever, a correlation between a non-linear equa-
tion and the response of the actual system is no
less important than the proposed equation. It is
necessary to prove with experimental data wheth-
er an analytical model reflects the actual system.
Accordingly, a system identification method and
a single mode approximation were used in this
study to estimate the parameters of the nonlinear
terms with experimental data after establishing
theoretically a geometrical non-linear dynamic
equation.

2. Natural Frequencies
of the Plate

To analyze the behavior of a plate the equa-
tion of motion of the cantilevered rectangular
plate shown in Fig. 1 was induced. Considering
the plate with the lengths ¢ and b along the x,y
directions, respectively, a thickness %, Young’s
modulus E and Poisson ratio v. The plate was
clamped at x=0, 0<y<p) and a distributed
mass with the thickness %', which was attached
at ap<x<a, 0<y<p to convert an exciting force
F(t) at x=xo, y=yp into a line force as shown
in Fig. 1.

The shear deformation and rotary inertia of the
plate were neglected and it was assumed that the
plate was isotropic and homogeneous satisfying
the Hooke’s law. The equation of motion of the
plate containing the distributed mass is as follows

iy o

Fig. 1 Schematic of the plate

(Wong, 2002)
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where, the flexural rigidity of the plate is D=
Ebr/12(1—1?%), V* is a biharmonic operator
and A is the area of the distributed mass, A=
(a—ao) X b.

First, to obtain the natural frequencies of the
plate let us assume the solution of Eq. (1) to be
Eq. (2).

z(x,y,t) = ZZAnm¢n() w(V)sinwt  (2)
where, ¢,(x),

beams, which satisfy the boundary condition of

¥m(y) are the eigenfunctions of

x,y direction, respectively. Also, the maximum
potential and kinetic energy are as in the Eq. (3).
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Substituting W (x,y) into Unax and Tmax and uti-
lizing the Rayleigh-Ritz method, algebraic equa-
tions were obtained as illustrated in Eq. (4).
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where, A=ph?/D and m, n, i, j=1,2,3, -+, N.
From Eq. (4) the natural frequencies can be cal-
culated.

The experimental set up shown in Fig. 2 was
used to investigate the plates. The produced plate
properties and design variables are represented in
Table 1. To obtain the natural frequencies of the
plate experimentally, a modal analysis was con-
ducted by means of the impact test. The frequency
response functions were measured from the re-
sponses obtained by an accelerometer (B&K 4371)
after exciting the plate by an impact hammer (B&
K 8202). The measuring process consisted of an
excitation at a definite point and measurements
at the other points. Also, each experiment was
repeated over 16 times and the data averaged in
order to decrease the noise that occurred during
the experiment and, increase data reliability.

The SMS (Spectral dynamics Co., 1994) soft-
ware was utilized to calculate the natural fre-
quencies and the mode shapes of the plate with
the measured frequency response functions. With
the FE-analysis program, Samcef (Samtech Co.,
2003), comparisons were made between the nu-

merical data and experimental results. The first
three mode shapes from the numerical and ex-
perimental results are depicted in Fig. 3. Also, the
natural frequencies from the experiments, FE and
theoretical analyses using Eq. (5) are represented
in Table 2.

where, ¢:(#) is the generalized coordinate, modal
displacement, and ¢,(x), ¥n(y) are the eigen-
functions of the beam as mentioned above. With
the data from each point, each modal displace-
ment of g1, g2, and gs, were obtained using Eq.

(6).

Fig. 2 Experimental set-up

Table 1 Properties of the plate

(C) 38Hz
Fig. 3 Vibration modes of the plate; (A), (B) and
(C) by Samcef, (a), (b) and (c) by SMS

(c) 32.5Hz

E, Young’s modulus 200 GPa Table 2 Natural frequencies of the plate with differ-
o, density 7850 kg/m® ent methods
- ZOZS?;;ZHO 0.3 203 T m frrelzztlllerr?iy FE-analysis | theoretical [experimental
&, thickness 0.0007 m w1 4 Hz 4.47 Hz 3.75 Hz
W/, thickness of distributed mass 0.005 m w2 11.8 Hz 12.33 Hz 10 Hz
a—ao, b, lengths of distributed mass | 0.01, 0.3 m w3 38 Hz 39.1 Hz 32.5Hz
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Wi, Wie, Wa1 can be determined from the previ-
ous theoretical modal analysis. Figs. 5 to 7 show
the power spectrum and the phase diagram of
each modal displacement.

Figure 5 shows that two or more periodic mo-
tions in the behavior of the first modal displace-
ment could be observed because of the increment
of the exciting frequency, which resulted in sub-
harmonic components of the exciting frequency
in the frequency spectrum. Furthermore, there
was a chaotic-like motion at 55 Hz. The frequen-
cy spectra and the phase diagrams of the second

e || A

(a) The plate with an exciter
Fig. 4
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modal displacement are depicted in Fig. 6. Fig. 6
shows that two or more periodic motion and a
chaotic-like motion also occurred beyond the
exciting frequency of 22 Hz. In Fig. 7, however,
the Hopf bifurcation occurred over 29 Hz of the
exciting frequency so that two-periodic motions
were verified in the behavior of the third modal
displacement. The bifurcation diagrams for each
modal displacement are depicted in Fig. 8.
Meanwhile, to compare experimental data with
the results from the linear analyses, the solutions
of Eq. (1) were assumed to be Eq.(5), and the

2 Charge
Labview .rnp.

Lase 7

SENSors Ccelerometer

Flate

(b) Schematics of the experimental system

Experimental apparatus

Fig. 5 Phase diagrams and power spectra of the first modal responses for ; (a) 22 Hz, (b) 29 Hz, (¢) 37 Hz and

(d) 55Hz
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(e)
Fig. 6 Phase diagrams and power spectra of the sec-
ond modal responses for; (a) 21 Hz, (b) 22
Hz, (¢) 30 Hz, (d) 37 Hz and (e) 55 Hz

Galerkin’s method for the separation of variables
was applied. The results from the experimental
excitation data are depicted in Figs. 9 and 10. As
shown in Figs. 9 and 10, there were no sub-har-
monic components of the exciting frequency lead-
ing the periodic motions in the phase diagram.

(e)
Fig. 7 Phase diagrams and power spectra of the third
modal responses for; (a) 22 Hz, (b) 29 Hz,
(c) 30Hz, (d) 52Hz and (e) 55Hz

Also, during the experiments, the maximum am-
plitude of displacement of the plate (peak to peak)
was 35 mm, which is over 1/10 of the length of the
plate at the constant acceleration of the force, 20
g. That is, the observed displacement was beyond
the applicable range of the linear plate model.
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(c) The third mode

Fig. 8 Bifurcation diagram for each modal displace-
ment

Therefore, the results from the linear plate model
didn’t agree with the experimental results. Conse-
quently, the non-linear equation of motion of the

spectium

.
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Fig. 9 Waterfall diagram of the plate spectra with
linear equation of motion

(c) (d)

Fig. 10 Phase diagrams of the first modal displace-
ment by numerical analysis for; (a) 19 Hz,
(b) 35Hz, (c) 42Hz and (d) 46 Hz

plate needs to be further investigated.

3. Non-Linear Equation
of Motion of the Plate

When the deformation of a plate is larger than
that of a linear assumption in a transverse vibra-
tion of a plate, a strain energy occurs in a mem-
brane as well as a bending strain energy (Timoshenko
and Woinowsky-Kreiger, 1959). Each potential
energy caused by the large deformation and kine-
tic energy is expressed as follows (Kadiri and
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Benamar, 2003).
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where, Vp, V, and T are a bending potential en-
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ergy, a potential energy of the membrane and a
kinetic energy of the plate, respectively. The para-
meter s is the surface area of the plate, and A is
the area of the distributed mass. Assuming the
solution of the plate equation to be the expression
in Eq.(8) and utilizing the Lagrange Equation
with Eq. (7), one can obtain the Duffing equation
of motion as shown in Eq. (9).
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where, ¢; is the generalized coordinate. As the ex-
periment was conducted with the frequencies rang-
ing from 1 to 55 Hz and since there were three
natural frequencies of the plate, the three degrees—
of-freedom model was established. Furthermore,
to consider the non-linear damping terms in Eq.
(10), cubic non-linear damping terms (Ghanbari
and Dunne, 1998 ; Doughty et al., 2003) and a
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quadratic term (Baker, 1961) were applied to Eq.
9).

D:aflidi‘l'a’zﬂi(]zz"l'a’sid%(]i‘l'a’ul}i|l}i| (10)

Table 3 Parameters estimated via Continuous time
identification

;i:;tf:r Ist mode | 2nd mode | 3rd mode
i 0.486X 10 | 0.121 X 10* | 0.528 X 10°
2i 6.622X 10° | 4.008 X 10° | 2.896 X 10°
a3i 0.765X<10° | 0.258X10° | 0.193X10°
Qi 0.207 X 10° | 0.026 X 10° | 0.394 X 10°

Fig. 11 Phase diagrams and power spectra of the
(a) 22 Hz, (b) 29
Hz, (c¢) 37 Hz and (d) 55 Hz

first modal responses for ;
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Also, the unknown parameters of the non-linear
terms can be estimated by continuous-time system
identification technique (Ghanbari and Dunne,
1998) after having approximated, for the simplic-
ity, the nonlinear equation of motion to each

single mode (Kadiri and Benamar, 2003) as fol-

lows.

miik]'i‘f’alidi‘f' CYZidiCZzz"f' dsi(ﬁ(]i‘f’ a4idi| Qzl

+kiiqit2bs: ?:VZ(xo,yo)F(lL) (D

To estimate the unknown parameters with the
experimental data, Eq. (11) was converted to the

o

Fig. 12 Phase diagrams, power spectra of the second
modal responses for; (a) 21 Hz, (b) 22 Hz,

(c) 30 Hz, (d) 37 Hz and (e) 55 Hz

Fig. 13 Phase diagrams, power spectra of the third
modal responses for ; (a) 22 Hz, (b) 29 Hz,
(c) 30Hz, (d) 52 Hz and (e) 55Hz
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matrix form of K=A-P as detailed in Eq. (12).
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(c) The third mode
Fig. 14 Bifurcation diagram of the system by nu-
merical analysis

where, K, A are the data from the experiments
and P is the unknown parameters. The estima-
tion results are shown in Table 3. Figs. 11 to 13
indicate the estimations of each mode in phase
diagrams and power spectra. In Figs. 11 to 13,
one can notice that the behavior of each modal
displacement shows the two or more periodic mo-
tions by the subharmonic components and their
multiple components as well as the chaotic mo-
tion that resulted. The bifurcation diagrams by
the numerical analyses with the non-linear equa-
tion of motion are depicted in Fig. 14, and cor-
related with the experimental results.

4. Conclusions

In this study, the non-linear dynamic analyses
of a plate were conducted experimentally and nu-
merically. Considering the large deformation of
the plate, the non-linear equation of motion was
derived and non-linear damping terms were add-
ed in the equation. The parameters of the non-
linear damping were estimated by a continuous-
time system identification technique with a single
mode approximation to the equation. The nu-
merical results, which fitted with experimental
results, were obtained. Consequently this study
shows that the nonlinear parameters of a plate
which is subject to a large deformation could be
decided on the basis of experimental results.
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